skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Long, Arianna S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Supernovae (SNe) may be the dominant channel by which dust grains accumulate in galaxies during the first Gyr of cosmic time as formation channels important for lower-redshift galaxies, e.g., asymptotic giant branch stars and grain growth, may not have had sufficient time to take over. SNe produce fewer small grains, leading to a flatter attenuation law. In this work, we fit observations of 138 spectroscopically confirmedz > 6 galaxies adopting standard spectral energy distribution (SED) modeling assumptions and compare standard attenuation law prescriptions to a flat attenuation law. Compared to SMC dust, flat attenuation close to what may be expected from dust produced in SNe yields up to 0.5 mag higherAVand 0.4 dex larger stellar masses. It also finds better fits to the rest-frame UV photometry with lower χ UV 2 , allowing the observed UV luminosities taken from the models to be fainter by 0.2 dex on average. The systematically fainter observed UV luminosities for fixed observed photometry could help resolve current tension between the ionizing photon production implied by JWST observations and the redshift evolution of the neutral hydrogen fraction. Given these systematic effects and the physical constraint of cosmic time itself, fairly flat attenuation laws that could represent the properties of dust grains produced by SNe should be a standard consideration in fitting to the SEDs ofz > 6 galaxies. 
    more » « less
    Free, publicly-accessible full text available May 19, 2026
  2. Abstract Measurements of galaxy rotation curves provide direct measurements of the distribution of baryonic and dark matter in galaxies. Here, we present spectroscopic confirmation and one such rotation curve for az = 0.5325 galaxy observed with Keck I/MOSFIRE as a filler target for the Web Epoch of Reionization Survey. The rotation curve was derived from Hα6563 Å emission out to a galactocentric radius of approximately 24 kpc. The target's rotation curve is well fit by an arctangent curve, that when combined with broadbanned photometric constraints on the galaxy’s stellar mass, predicts a dark matter fraction consistent with results from the literature forz ∼ 0.5. We constrain the estimate for this galaxy's dark matter fraction to be 93%, out to a galactocentric radius of 30 kpc. 
    more » « less
  3. Abstract We report the discovery of 15 exceptionally luminous 10 ≲z≲ 14 candidate galaxies discovered in the first 0.28 deg2of JWST/NIRCam imaging from the COSMOS-Web survey. These sources span rest-frame UV magnitudes of −20.5 >MUV> −22, and thus constitute the most intrinsically luminousz≳ 10 candidates identified by JWST to date. Selected via NIRCam imaging, deep ground-based observations corroborate their detection and help significantly constrain their photometric redshifts. We analyze their spectral energy distributions using multiple open-source codes and evaluate the probability of low-redshift solutions; we conclude that 12/15 (80%) are likely genuinez≳ 10 sources and 3/15 (20%) likely low-redshift contaminants. Three of ourz∼ 12 candidates push the limits of early stellar mass assembly: they have estimated stellar masses ∼ 5 × 109M, implying an effective stellar baryon fraction ofϵ∼ 0.2−0.5, whereϵ≡M/(fbMhalo). The assembly of such stellar reservoirs is made possible due to rapid, burst-driven star formation on timescales < 100 Myr where the star formation rate may far outpace the growth of the underlying dark matter halos. This is supported by the similar volume densities inferred forM∼ 1010Mgalaxies relative toM∼ 109M—both about 10−6Mpc−3—implying they live in halos of comparable mass. At such high redshifts, the duty cycle for starbursts would be of order unity, which could cause the observed change in the shape of the UV luminosity function from a double power law to a Schechter function atz≈ 8. Spectroscopic redshift confirmation and ensuing constraints of their masses will be critical to understand how, and if, such early massive galaxies push the limits of galaxy formation in the Lambda cold dark matter paradigm. 
    more » « less
  4. Abstract We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin2at 2 mm. Twelve of 13 detections above 5σare attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift of z 2 mm = 3.6 0.3 + 0.4 primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources atz> 3 and 38% ± 12% of sources atz> 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z< 3) are far more numerous than those atz> 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300Myr−1and a relative rarity of ∼10−5Mpc−3contribute ∼30% to the integrated star formation rate density at 3 <z< 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies atz> 2. Analysis of MORA sources’ spectral energy distributions hint at steeper empirically measured dust emissivity indices than reported in typical literature studies, with β = 2.2 0.4 + 0.5 . The MORA survey represents an important step in taking census of obscured star formation in the universe’s first few billion years, but larger area 2 mm surveys are needed to more fully characterize this rare population and push to the detection of the universe’s first dusty galaxies. 
    more » « less